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Abstract

As the field of genomics matures, more complex genotypes and phenotypes are being
studied. Fanconi anemia (FA), for example, is an inherited chromosome instability syndrome with
a complex array of variable disease phenotypes including congenital malformations,
hematological manifestations, and cancer. To better understand specific aspects of the genetic
etiology of FA and other rare diseases with complex phenotypes, it is often necessary to reduce the
dimensions of the disease phenotype information. Towards this end, we extend a novel non-
parametric approach to include information about a hierarchical structure among disease
phenotypes. The proposed extension increases information content of the phenotype scores
obtained and, thereby, the power of genotype-phenotype relationships studies.

KEYWORDS: multidimensional, ranking, Fanconi anemia, censoring, genotype, phenotype, non-
parametric
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INTRODUCTION 

An objective of genomic biology is to elucidate the relationship between genetic 
variation and phenotype. High throughput technology has led to an expansion of 
genotypic information including genome sequencing in humans and model organ-
isms. As genotype resources are being annotated, organized, structured, and made 
accessible, phenotype resources await similar efforts. Thus, the importance of the 
organization of the human phenome is being recognized (Freimer and Sabatti 
2003).  

A phenome is a catalog of phenotypes or traits expressed by a cell, tissue, or-
gan, organism, or species that arise from genetic, epigenetic, and environmental 
interactions. Of significance is the subset of traits associated with disease. Deter-
mining genotype-phenotype relationships, essential for the study of genetic disor-
ders, requires well organized disease phenomes (Freimer and Sabatti 2003). 

Fanconi anemia (FA) is a disease found in many populations (Auerbach 1993; 
Offit et al. 2003; Savino et al. 2003; Yagasaki et al. 2003; Kutler and Auerbach 
2004; Tamary et al. 2004; Callen et al. 2005). Mutations in 13 known genes, 
FANCA, B, C, D1, D2, E, F, G, I, J, L, M and N (Meetei et al. 2003; Levitus et al.
2004; Levran et al. 2005; Meetei et al. 2005; Reid et al. 2007; Smogorzewska et 
al. 2007) are known to cause FA through a defect in a BRCA-related DNA repair 
pathway (Nakanishi et al. 2005; Wang 2007). This defect causes sensitivity to 
DNA cross-linking agents and chromosomal instability (Auerbach 1993; Meyn 
1997; Taylor 2001; Charames and Bapat 2003; De la Torre et al. 2003). FA sub-
jects display diverse disease symptoms. Most FA subjects develop hematological 
abnormalities at a young age, with bone marrow failure resulting in aplastic ane-
mia. Many FA subjects have congenital abnormalities including hyperpigmenta-
tion, short stature, and radial ray abnormalities (Giampietro et al. 1993; 
Rosenberg et al. 2004). FA subjects have an increased risk of primarily hemato-
logical cancers (Alter et al. 2003; Kutler et al. 2003). 

Many diseases have tools for scoring severity or phenotype. In cystic fibrosis, 
there is a pulmonary disease severity index (Hafen et al. 2006), sickle cell anemia 
researchers have proposed a severity index (Vanscoy et al. 2007), and in Hunting-
ton's disease there is the Unified Huntington's disease rating scale (Klempir et al.
2006). Genetic association studies of complex diseases such as Schizophrenia 
(John et al. 2008), alcoholism (Dick et al. 2008), diabetes (Meigs et al. 2007) and 
insulin resistance (An et al. 2005), are also using composite and multiple pheno-
types. 

For FA, scoring systems were developed with different goals. Auerbach et al. 
(1989) developed a “simplified scoring method” to diagnose FA. This method 
correlates FA symptoms with increased sensitivity to chromosome breakage in 
lymphocytes exposed to a DNA cross linking agent. The variables’ coefficients 

1

Morales et al.: Multivariate Disease Phenotyping Using µ-Scores



are determined through logistic regression (Giampietro et al. 1993). Rosenberg et 
al. (2004) advanced a system that aggregated FA outcome risk factors into a 
model for risks assessments with summary scores. Faivre et al. (2000) proposed a 
scoring system to connect FA outcomes to complementation groups. These tools 
have uses such as disease state classification, evaluation of disease phenotypes, 
disease course prediction, and disorder genetics and genomics.  

The FA phenotype includes chromosome breaks, hematological manifesta-
tions, cancer and congenital malformations. To be able to score such a complex 
phenotype with respect to a overall severity, we extend a statistical approach 
(Wittkowski et al. 2004) based on u-statistics (Hoeffding 1948) to include infor-
mation about a hierarchical structure among phenotype variables. The resulting 
hierarchical µ-scores (for multivariate u-scores) comprise a system for ranking 
FA subjects according to severity. This system will be called the Fanconi Anemia 
Phenome Score (FAPS). The FAPS is being developed as a tool for research. One 
application explores FA genotype-phenotype relationships between FANCA muta-
tions and the FAPS. 

MATERIALS AND METHODS 

DATA SOURCE: 

This study is based on subject data from the International Fanconi Anemia Regis-
try (IFAR), which was established at The Rockefeller University in 1982 to gather 
genotype and phenotype information from FA subjects (Auerbach et al. 1989). 
FA subjects are registered in the IFAR when their diagnosis is confirmed in pe-
ripheral blood lymphocytes by assessing chromosomal breakage induced through 
the DNA cross-linking agent diepoxybutane (DEB). The information collected 
includes cancer incidence, hematological abnormalities, and congenital mal-
formations. Attempts to obtain follow-up data and report results have been made 
periodically. This study is based on 239 individuals or 19% of the 1200 subjects 
in the IFAR. To reduce variance and avoid bias due to technical errors we ex-
cluded subjects with unique mutations. Approval for these studies was obtained 
from The Rockefeller University Institutional Review Board. Informed consent 
was provided according to the Declaration of Helsinki. 

PHENOTYPES 

We organized 36 phenotype outcomes in five categories: chromosomal breaks 
(CB), life span (LS), cancer (CA), hematological manifestations (HM) and con-
genital malformations (CM) (see Figure 1). The chromosome breakage category 
is comprised of the proportion of aberrant cells and number of breaks per aberrant 
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cell for baseline (BL) and DEB-induced breaks. Mosaic status is defined as <50% 
aberrant cells in the DEB test. In some subjects, mosaicism results from the rever-
sion of pathogenic mutations to wild-type. Twenty outcomes are censored, i.e., 
observed as two variables: last day negative (LDN, ‘0’ if unknown) and first day 
positive (FDP, ‘+∞’ if unknown). Thus, the 36 outcomes consist of 56 variables. 
For instance, LS is defined as time from date of birth to censored date of death. 
CA data consists of censored data for both solid tumor and leukemia onset. HM 
data is comprised of censored information on any HM, including platelets, red, 
and white cells and hematological status at the time of bone marrow transplant. 
CM data consists of binary data on five minor and eight major malformations as 
well as continuous data for head circumference and height percentiles. 
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Figure 1: Fanconi anemia phenotype tree.  The hierarchical organization of the multilayered 
multi- and univariate FA phenotype data. Abbreviations (DEB: Diepoxybutane; BL:Baseline; 
Cens.: censored; LDN: Last Date Negative; FDP: First Date Positive; Leuk: leukemia; sTumors: 
solid Tumors; HM: Hematological Manifestation; BMT: Bone Marrow Transplant; CM: congeni-
tal malformation; HC%: Head circumference percentile; Height%: Height percentile; GastroInt: 
gastrointestinal); Tree node descriptions: Censoring nodes (nested LDN/FDP pairs, 8 pairs); Uni-
variate terminal nodes (‘leaves’, no borders, total: 36); Multivariate nodes (higher level informa-
tion, thick border, total:.20). 
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0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

0 Alleles affected

1 Allele affected

2 Alleles affected

Figure 2: FANCA mutation map: This 
diagram displays the regions (exons and 
introns) on the x-axis and the FANCA 
subjects on the y-axis sorted by the first 
affected region. Each cell indicates the 
predicted effect on the protein (no, one, 
or both alleles affected). Certain FANCA 
mutations (e.g. deletions; splicing; frame-
shifts; stop codons) occurring in a par-
ticular region are assumed to affect all 
downstream regions. 

GENOTYPE-PHENOTYPE RELATIONSHIPS  

Our study focuses on FANCA subjects, 
because they constituted the largest group. 
The protein coded by FANCA’s 43 exons is 
part of a nuclear core complex (Garcia-
Higuera et al. 1999). The FANCA muta-
tional events include amino acid substitu-
tions (26 cases), genomic deletions (133), 
splicing mutations (2), frameshifts (25), 
stop codons (10) and unknown mutations 
(4). 

A mutation map was constructed to re-
present the bi-allelic mutational status in 
these subjects (Figure 2). For FA to occur, 
both FANCA alleles need to be mutated, 
either in the same or in different positions. 
The mutational events affect the transmis-
sion of genetic information into protein. We 
assume that an amino acid substitution af-
fects the mutation site only, while genomic 
deletions, frameshifts, splicing mutations 
and stop codons have effects on protein 
function that propagate throughout the pro-
tein. The mutation status (Figure 2) indi-
cates these assumed changes in the gene 
product. 

MULTIVARIATE U-SCORES 

Non-parametric statistical methods have 
been recommended for analyses in human 
phenomics (Freimer and Sabatti 2003). 
Multivariate u-statistics (µ-statistics) 
(Wittkowski et al. 2004) have advantages 
over multivariate methods based on the (generalized) linear model, where dimen-
sionality is reduced by assuming a linear combination of variables, often after a 
(supposedly) linearizing transformation. Since the relative importance of the vari-
ables, their correlation, and the relationship of each variable with the latent factor 
(‘genetic risk’ or ‘disease severity’) are unknown, model validity cannot be estab-
lished on theoretical grounds. Trying to resolve this conundrum through empirical 
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‘validation’, i.e., by choosing weights and functions that provide a fit with a ‘gold 
standard’ is not only conceptually problematic (Popper 1959), but also often im-
practical. Using a ‘Delphi method’ approach (Delbecq 1975), where weights and 
functions are agreed upon by a group of experts, allows for a comparison between 
studies where the researchers agreed to use the same scoring system. However, 
the diversity of scoring systems used attests to the subjective nature of this proc-
ess. 

As a non-parametric method, µ-statistics have the advantage of requiring 
fewer assumptions to be made about the variables (Friedman 1937). The only as-
sumption regarding the relationships between variables and latent factors is that 
each variable has an orientation (is ‘directional’) – if all other variables are held 
constant, an increase is either always ‘good’ or always ‘bad’.  

µ-Scores are based on the concept of partial orderings, where some of the 
pairwise orderings can be ambiguous, i.e., one can find any set of monotonous 
transformations applied to or any set of non-zero weights assigned to the variables 
that change the pairwise ordering. As µ-scores are not affected by such transfor-
mations or weights, one does not need to select and justify them.  

When variables can be assumed to be correlated with a single latent factor 
(e.g., disease severity), a partial ordering among the subjects can be defined 
(Wittkowski 1992). If one of two subjects has values at least as high among all 
variables, but higher in at least one variable than the other subject, it will be called 
‘superior’. A µ-score is assigned to each subject by counting the number of infe-
rior subjects and subtracting the number of superior subjects.  

A downside of this approach is that the number of ambiguous pairwise order-
ings increases with the number of variables, unless the variables are highly cor-
related. As a result, a larger sample may be needed to achieve the desired power. 
When additional information is available, some of these ambiguities can be re-
solved. In this paper we utilize information about a structure among the variables. 
If the order between subjects A and B is ambiguous with respect to variables re-
lated to one factor (e.g., HM), unambiguous results with respect to another factor 
(e.g., CA) can ‘resolve’ this ambiguity. 
 In Wittkowski et al. (2004), the square matrix describing the partial ordering 
based on ordinal data was derived by comparing data profiles. Here, we separate 
this process into two steps, as outlined in Figure 3. Let , 1, ,j j n′ = K  denote the 
subjects (rows) and i  the variables (columns). The univariate pair-wise orderings 
for a set of subjects are represented as the n n×  matrices ( ) ( )( )( )i i

jjU u=  (middle 

row) with ( )
' ?i

jju =  if ( )i
jx  or ( )

'
i

jx  are missing and ( ) ( ) ( )( ) ( ) ( )( )' I Ii i i i i
jj j j j ju x x x x′ ′= < − >  

otherwise (Wittkowski et al. 2004). This extends the matrix introduced by 
Deuchler (1914) to missing data. 
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The matrix U  obtained by the ‘AND’ operation   

( ) ( )( )( )i i
jjiU U u ′= =⊕ , where 

( ) ( )

( ) ( )

( ) ( )

' '

' '
'

' '

1 : 1 : 1

0 : 0 : 1
 

1 : 1 : 1
? otherwise

i i
jj jj

i i
jj jj

jj
i i

jj jj

i u i u

i u i u
u

i u i u

⎧ ∃ = ∧∀ ≠−
⎪
⎪ ∃ = ∧∀ ≠

= ⎨
⎪− ∃ =− ∧∀ ≠
⎪
⎩

is the same as one would obtain by applying the partial ordering defined in 
(Wittkowski et al. 2004) and, thus, the scores obtained from ( )i

i
U U=⊕  (bottom 

of  Figure 3) are the non-hierarchical µ-scores. 

X1 X2 Y1 Y2
A 1 2 3 2
B 2 2 3 1
C ? 1 2 1
D 2 1 2 1

X1 1 2 ? 2 X2 2 2 1 1 Y1 3 3 2 2 Y2 2 1 1 1
1 0 -1 ? -1 2 0 0 1 1 3 0 0 1 1 2 0 1 1 1
2 1 0 ? 0 2 0 0 1 1 3 0 0 1 1 1 -1 0 0 0
? ? ? ? ? 1 -1 -1 0 0 2 -1 -1 0 0 1 -1 0 0 0
2 1 0 ? 0 1 -1 -1 0 0 2 -1 -1 0 0 1 -1 0 0 0

X1 X2 Y1 Y2 one-step U W
A 1 2 3 2 0 ? 1 ? 1 2
B 2 2 3 1 ? 0 1 1 2 3
C ? 1 2 1 -1 -1 0 0 -2 4
D 2 1 2 1 ? -1 0 0 -1 3

Figure 3: Ambiguity caused by discordant pairwise orderings across variables. Hypothetical 
example with four variables X1, X2, Y1, and Y2, observed in four subjects A, B, C, and D. The 
node on top shows the data, the center row the four univariate partial (X1) and complete (X2, Y1, 
Y2) orderings, The node at the bottom shows the data, the multivariate partial ordering, the µ-
scores (U) and their information content (W). Each partial ordering shows whether the row ele-
ment is smaller (-1), identical (0), or larger (1) than the column element. Ambiguous pairwise or-
derings are indicated as ‘?’. On the one hand, ambiguities (such as those in X1) can be resolved if 
the corresponding pairwise orderings in the other orderings are unambiguous. On the other hand, 
ambiguities can arise (such as in the upper right and lower left corner) if some pairwise orderings 
are negative, while others are positive. 

If the variables X1 and X2 are related to the same ‘factor’ (e.g., CB), while the 
variables Y1 and Y2 are related to another ‘factor’ (e.g., CM), one can replace 

( )
NH

i
i

U U=⊕  by ( ) ( ){ }H { : X1, X2} { : Y1, Y2}
,i i

i i
U U U=⊕ ⊕ ⊕ . The advantage of cre-

ating the matrices for the univariate orderings first and combining them in a sepa-
rate step before compute the scores, is that incorporating knowledge about the 
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sub-factor hierarchy by hierarchically combining the matrices can reduce loss of 
information content (number of unambiguous pairwise orderings contributing to a 
score). Figure 4 demonstrates how reflecting the structure increases information 
content by resolving the ambiguity related to comparing A vs. D. 

X1 X2 Y1 Y2
A 1 2 3 2
B 2 2 3 1
C ? 1 2 1
D 2 1 2 1

X1 1 2 ? 2 U X2 2 2 1 1 Y1 3 3 2 2 Y2 2 1 1 1
1 0 -1 ? -1 -2 2 0 0 1 1 3 0 0 1 1 2 0 1 1 1
2 1 0 ? 0 1 2 0 0 1 1 3 0 0 1 1 1 -1 0 0 0
? ? ? ? ? 0 1 -1 -1 0 0 2 -1 -1 0 0 1 -1 0 0 0
2 1 0 ? 0 1 1 -1 -1 0 0 2 -1 -1 0 0 1 -1 0 0 0

X1 X2 oligovariate Y1 Y2 oligovariate
1 2 0 -1 1 ? 3 2 0 1 1 1
2 2 1 0 1 1 3 1 -1 0 1 1
? 1 -1 -1 0 0 2 1 -1 -1 0 0
2 1 ? -1 0 0 2 1 -1 -1 0 0

X1 X2 Y1 Y2 hierarchical U W
A 1 2 3 2 0 ? 1 1 2 3
B 2 2 3 1 ? 0 1 1 2 3
C ? 1 2 1 -1 -1 0 0 -2 4
D 2 1 2 1 -1 -1 0 0 -2 4

Figure 4: Resolving ambiguity from discordant pairwise orderings: Using hierarchical struc-
ture in the example of Figure 3. Note that adding the intermediate step resolves the ambiguity in 
the lower left and upper right corner of the matrices representing the partial orderings. 

Figure 4, shows that reflecting more hierarchical information can never decrease 
and typically increases information content, because it reduces the effect of 
‘noise’ that may have caused pairwise orderings within a factor to be ambiguous. 
If all ambiguities are resolved, the µ-scores become ranks, which are uniformly 
spaced across the widest possible range. 

µ-Score can easily handle censored (including interval-censored) variables 
such as LS, CA and HM, where only the last date the subject is known to have 
been negative (LDN) and the first date the subject is known to have been positive 
(FDP) are available (see Figure 5). Subject A experiences the event under investi-
gation ‘later’ than subject B if LDN(A) > FDP(B). For left- and right-censored 
observations, LDN and FDP are −∞ and +∞, respectively. The censored informa-
tion includes date of birth and date of death for life span, dates for solid tumor and 
leukemia onset for CA and dates of onset for any HM, abnormal platelets, red, 
and white cells and hematological status on the bone marrow transplant date. 
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Time to Hematological
ManifestationTime to Cancer

X1 X2 Y1 Y2
A 1 2 2 3
B 2 2 1 3
C ? 1 1 2
D 1 2 1 2

X1 1 2 ? 1 Y1 2 1 1 1
X2 2 2 1 2 Y2 3 3 2 2

X1 X2 censored U Y1 Y2 censored U
1 2 ? -1 1 ? 0 2 3 ? ? 1 1 2
2 2 1 0 1 1 3 1 3 ? ? ? ? 0
? 1 -1 -1 ? -1 -3 1 2 -1 ? ? ? -1
1 2 ? -1 1 ? 0 1 2 -1 ? ? ? -1

X1 X2 Y1 Y2 one-step U W X1 X2 Y1 Y2 hierarchical U W
A 1 2 2 3 0 ? 1 1 2 3 A 1 2 2 3 ? -1 1 1 1 3
B 2 2 1 3 ? 0 1 1 2 3 B 2 2 1 3 1 0 1 1 3 4
C ? 1 1 2 -1 -1 0 -1 -3 4 C ? 1 1 2 -1 -1 ? -1 -3 3
D 1 2 1 2 -1 -1 1 0 -1 4 D 1 2 1 2 -1 -1 1 ? -1 3

Figure 5: Reflecting censoring during the creation of matrices of pairwise orderings. Subjects A 
and B can be ordered if X1(A)>X2(B) or Y2(A)<Y1(B). unless one observation is uncensored, in 
which case “≥” or “≤” suffice. 

By adjusting the transformation (censored or non-censored) and the aggregation 
of subsets (hierarchical or overlapping), µ-scores can be used for a range of prob-
lems. The scores can be used for various analyses, including testing differences 
between groups defined by simple genotypes with respect to complex phenotypes, 
correlating complex genotypes with complex phenotypes or identifying genetic 
variables that explain (correlate best with) a complex phenotype. 

In the muStat package for S and R, mu.PwO generates Deuchler’s pairwise 
(univariate) orderings, mu.AND combines them into a partial pairwise ordering, 
and mu.Sums computes scores and weights from a partial pairwise ordering. The 
information about the variables is provided as a formula, where parentheses indi-
cate the hierarchy and variables separated by colon indicate the bounds of interval 
censored observations (see the Appendix for details).  

RESULTS 

CALCULATING THE FANCONI ANEMIA PHENOME SCORE 

µ-scores were computed for each of the 56 branches of Figure 1 with respect to 
the structure among the 36 FA variables. In Figure 6, variables were assigned a 
‘polarity’ of +1 or −1 to ensure a common direction with ‘severity’ (high are 
‘good’ for LS, but ‘bad’ for CB). This system for ranking FA subjects according 
to severity comprises the Fanconi Anemia Phenome Score (FAPS).  
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Figure 6: FAPS Input/Output: The column header colors indicate the FA phenotypes (orange: 
CB, yellow: LS, green: CA, blue: HM, purple: CM) Part A: Input data (36 variables by 239 sub-
jects) with binary scores (white: 0, pink: 1) for the CA, HM, CM variables. Censored variables 
have dark rectangles in their column headers. Part B: µ-Scores for the 36 ‘leaves’ and the 20 mul-
tivariate phenotypes (dark column header borders) (total: 56), including the global FAPS (black 
column header). Rows sorted by the global FAPS score (right most column) and colored according 
to quartiles of FA severity (red: severe, orange: less severe, light blue: mild, Blue: very mild). 

To verify the hierarchical structure, multidimensional scaling (MDS) was per-
formed (Torgerson 1952; Shepard 1962a, b; Kruskal 1964). MDS generates a map 
where the distances between variables are fitted to represent their correlations 
(Figure 7), which reconstitutes the structure of the FA phenotypes (Figure 1). 
How to calculate the hierarchical (UH) and the non-hierarchical (UNH) µ-scores 
is demonstrated in the Appendix.  
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Both µ-scores are intrinsically valid, but increasing information content by incor-
porating hierarchical information makes the distribution of scores based on par-
tially ordered data more similar to the wider, uniform distribution of totally or-
dered data (Figure 8). The non-hierarchical (NH) scores are concentrated in a nar-
row range (0–40), while the hierarchical (H) scores are spread from −100 to 150. 

The four ‘outliers’ in Figure 8 have very low NH scores (≈ −100), while their 
H scores are closer to the median (≈ 0). These subjects all have CA, three of them 
died and the other had HM. Thus, few subjects are worse with respect to CA/HM. 
On the other hand, they lack any CM, so that no subject is better with respect to 
CM. H scores appropriately balance CA/HM vs CM. With NH scores, however, 
subjects with any CM are excluded from the comparisons against these four sub-
jects, unless they are also higher with respect to CA/HM. 
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Genotype-Phenotype Relationships  

Hierarchical µ-scores utilize knowledge of relationships between phenotypes. We 
examined the FA genotype-phenotype relationships by linking the FAPS to the 
FANCA mutation map. Among the FANCA subjects, the mutational events cover 
the whole gene (Figure 2); many subjects had mutations affecting the last seven 
regions (exons, introns). 

For both the NH and the H FAPS, Figure 9 shows curves of the average FAPS 
among subjects by genotype at each gene region. The severity at each region fre-
quently varies in all genotypes, producing distinct curves. 
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Figure 9: FANCA severity profiles. For each region (exon/intron) the severity scores for the 239 
subjects were grouped by mutation status (0: no allele affected, 1: one allele affected, 2: both al-
leles affected; see Figure 2). The lines depict the median hierarchical (A) and non-hierarchical (B) 
FAPS for each mutation status. The shaded areas indicate the 67% confidence intervals (the non-
parametric analogue to “±SEM” in parametric models). For estimates based on less then 6 subjects 
(dotted lines), confidence intervals are omitted. Note: the baseline indicates the median score 
among all FA subjects. 

When applied to the FA data, Figure 9 shows that both methods extract the same 
features. With H-FAPS, however, the difference among the curves is more pro-
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nounced, the ‘1’ curve is higher than the ‘0’ or ‘2’ curves, the ‘0’ curve is higher 
than the ‘2’ curve until its drop in exon 38, where the ‘2’ and ‘0’ curve are more 
steeply in- and decreasing, respectively.  

DISCUSSION 

SCORING SYSTEM 

We present an FA phenotype scoring system based on a multivariate, non-para-
metric statistical method (µ-scores) that can score subjects characterized by sev-
eral ordinal variables. Here, the term ‘ordinal’ is used in its literal meaning, 
namely that the order among the outcomes is known (Wittkowski 1991). Ordered 
variables can be both discrete (ties are exact) and continuous (the order within ties 
is ambiguous) (Wittkowski 1998). As in linear model regression, discrete nominal 
variables can be included if split into binary ‘dummy’ variables. 

With this extension, µ-scores can integrate knowledge about structure among 
the variables, several of which may be (interval) censored. This knowledge can be 
based on expert information on correlations between variables, using statistical 
methods, such as MDS. These scores are used to study genotype-phenotype rela-
tionships by relating FANCA mutations to 36 FA phenotype variables. Depending 
on the degree of detail sought, scores with varying levels of integration are ob-
tained, ranging from 36 univariate u-scores to a single global µ-score (Figure 6). 
This approach offers several advantages over existing methods. 

For example, µ-scores are ‘intrinsically valid’ by construction. Among two 
subjects, the subject with higher disease severity will always be assigned a higher 
µ-score. Thus, µ-scores can score phenotypes for diseases lacking a ‘gold stan-
dard’ to which conventional linear weight scores would need to be fit as an em-
pirical ‘justification’ for the selection of a particular set of weights and transfor-
mations. 

The proposed extension of µ-scores reduces the tendency of partial orderings 
to have increasing numbers of ambiguous pairwise orderings as the number of 
variables increases. To counter the resulting decrease in information content, the 
extension utilizes knowledge about the structure of the variables. Our results 
demonstrate the importance of retaining as much information content as possible. 
Hierarchical µ-scores discriminate better, thereby increasing the sensitivity for 
genotype-phenotype studies (see Figure 9). The difference between the curves is 
more pronounced with the H-FAPS than the NH-FAPS. Also, the H-FAPS differ-
entiates better between the areas in the FANCA gene (i.e. 3’ protein binding sites). 
This better separation of curves results from the higher information content of the 
H-FAPS. 

Additionally, since the FAPS can be created ‘ad hoc’ for each study popula-
tion under consideration and is currently not intended to be used with uncharacter-
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ized patients, the training and target population are identical, so that there is no 
need to show that µ-score is valid when used with other populations, making them 
particularly useful in the field of ‘personalized medicine’ (Wittkowski 2003).  

With an earlier intrinsically valid approach based on the marginal likelihood 
(MrgL) principle (Wittkowski 1992; Susser et al. 1998), one needs to generate all 
rank permutations compatible with the partial ordering to compute the average 
across the compatible rankings (up to a scale transformation). µ-Scores, being the 
average of the smallest and the largest rank across these rankings, converge 
against the MrgL scores, yet are computationally feasible (growing with the 
square of the number of subjects only, see Figure 3), while MrgL scores are np-
hard (growing with the factorial of the number of subjects). 

GENOTYPE-PHENOTYPE RELATIONSHIPS 

We present genotype-phenotype relationship data linking FAPS with FANCA mu-
tations (Figure 2). Our data provide support for the method used to generate the 
FAPS and about the relationship of FANCA regions to the FAPS.  

In Figure 9, the severity at each FANCA region varies by mutation status (0, 1, 
2 affected alleles), suggesting that domains of the FANCA protein relate differ-
ently to severity. At exon 38, for instance, severity increases steeply in the curve 
for the single affected allele and decreases steeply in the curve for unaffected al-
leles, pointing to a gene region with potential protein binding sites and motifs 
(Garcia-Higuera et al. 1999; Otsuki et al. 1999; Huber et al. 2000; Otsuki et al.
2001; Otsuki et al. 2002; Ferrer et al. 2005; Yang et al. 2005; Medhurst et al.
2006; Oda et al. 2007). Our results based on the FAPS are consistent with previ-
ous findings based on experimental work. This suggests that µ-scores can help 
with detecting relevant phenomena. 

Subjects with mutations in different regions (the ‘1’ curve in Figure 9) have a 
higher FAPS and, among the 40 compound heterozygotes, the 25% (10) with two 
different predicted defective proteins have the highest FAPS. A reason for this 
seeming contradiction with reported results that homozygous mutations are more 
severe (Faivre et al. 2000) could be that univariate approaches tend to overlook 
the overall severity conferred by two different defective proteins causing different 
phenotypes. Molecular data can also be correlated with phenotype scores. For ex-
ample, SNP or gene expression array data can be correlated to the FAPS to impli-
cate loci or genes in disease severity or specific phenotypes (Song 2007). These 
correlations can also be used to generate hypotheses about the mechanisms of 
phenotype formation. 

Resources for calculating µ-scores and related statistics are available from 
The Rockefeller University (see Appendix). To facilitate screening studies a Web 
service (http://muStat.rockefeller.edu) to a grid resource. provides capacities that 
promise to match computational challenges (Jorge Andrade 2006). 
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Appendix 

In the muStat package the function for R1 and S-Plus.2 mu.PwO generates 
Deuchler’s pairwise (univariate) orderings, mu.AND combines them into a partial 
pairwise ordering, and mu.Sums computes scores and weights from a partial 
pairwise ordering. The pseudo-code below demonstrates calculation of the hierar-
chical (UH) and the non-hierarchical (UNH) µ-scores of Figure 7. The parenthe-
ses indicate the hierarchy and variables separated by colon indicate the bounds of 
interval censored observations. 

frml <- “( 
 ((BLnB,BLpC),((DEBnB,DEBpC),Mosaic)), 
 LS0:LS1, 
 (CA0:CA1,LK0:LK1), 
 (HM0:HM1,(P0:P1,R0:R1,W0:W1),BMT0:BMT1), 
 ((HZ%,(EAR,…)),(HT%,(BMRK,…))) 
)” 

  
x    <- importData(…)  
PO   <- mu.PwO(x, frml)      # creates univariate pw orderings 
                             # using censoring info from frml only 

POH  <- mu.AND(PO,frml)      # creates part. ordering  w/hierarchy 
PONH <- mu.AND(PO     )      # creates part. ordering wo/hierarchy 

UH   <- mu.Sums(POH )$score  # creates scores  w/hierarchy 
UNH  <- mu.Sums(PONH)$score  # creates scores wo/hierarchy 

The statements  
mu.Score(x,frml) and  
mu.Sums( mu.AND(mu.PwO(x,frml), frml) )$score  

are equivalent to:  
mu.Sums( mu.AND(cbind( 
 mu.AND(cbind( 
  mu.AND(mu.PwO(x[,c(BLnB,BLpC)])), 
  mu.AND(cbind( 
   mu.AND(mu.PwO(x[,c(DEBnB,DEBpC)])),mu.PwO(x[,Mosaic]))))), 
 mu.PwO(x[,LS0],x[,LS1]), 
 mu.AND(cbind( 
  mu.PwO(x[,CA0],x[,CA1]), mu.PwO(x[,LK0],x[,LK1]))), 
 mu.AND(cbind( 
  mu.PwO(x[,HM0],x[,HM1]), 
  mu.AND(cbind( 
   mu.PwO(x[,P0],x[,P1]), … mu.PwO(x[,W0],x[,W1]))), 
  mu.PwO(x[,BMT0],x[,BMT1]))), 
 mu.AND(cbind( 
  mu.AND(cbind(mu.PwO(x[,HZp]),mu.PwO(x[,c(EAR,…)]))), 
  mu.AND(cbind(mu.PwO(x[,HTp]),mu.PwO(x[,c(BMRK,…)])))))) 
)$score 

                                           
1 http://cran.r-project.org  
2 http://csan.insightful.com/PackageDetails.aspx?Package=muStat  
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